Telegram Group & Telegram Channel
🟡 scikit-learn, UMAP и HDBSCAN теперь работают на GPU — без единой строчки изменений в коде

Команда cuML (NVIDIA) представила новый режим ускорения, который позволяет запускать код с scikit-learn, umap-learn и hdbscan на GPU без изменений. Просто импортируйте cuml.accel, и всё — можно работать с Jupyter, скриптами или Colab.

Это тот же «zero-code-change» подход, что и с cudf.pandas: привычные API, ускорение под капотом.

✔️ Сейчас это бета-версия: основное работает, ускорение впечатляющее, мелкие шероховатости — в процессе доработки.

✔️ Как это работает:
— Совместимые модели подменяются на GPU-эквиваленты автоматически
— Если что-то не поддерживается — плавный откат на CPU
— Включён CUDA Unified Memory: можно не думать о размере данных (если не очень большие)

Пример:
# train_rfc.py
#%load_ext cuml.accel # Uncomment this if you're running in a Jupyter notebook
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

# Generate a large dataset
X, y = make_classification(n_samples=500000, n_features=100, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

# Set n_jobs=-1 to take full advantage of CPU parallelism in native scikit-learn.
# This parameter is ignored when running with cuml.accel since the code already
# runs in parallel on the GPU!
rf = RandomForestClassifier(n_estimators=100, random_state=0, n_jobs=-1)
rf.fit(X_train, y_train)


Запуск:
📍 python train.py — на CPU
📍 python -m cuml.accel train.py — на GPU
📍 В Jupyter: %load_ext cuml.accel

Пример ускорения:
📍 Random Forest — ×25
📍 Linear Regression — ×52
📍 t-SNE — ×50
📍 UMAP — ×60
📍 HDBSCAN — ×175

✔️ Чем больше датасет — тем выше ускорение. Но не забывайте: при нехватке GPU-памяти может быть замедление из-за подкачки.

🔗 Документация: https://clc.to/4VVaKg

Библиотека дата-сайентиста #свежак
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6378
Create:
Last Update:

🟡 scikit-learn, UMAP и HDBSCAN теперь работают на GPU — без единой строчки изменений в коде

Команда cuML (NVIDIA) представила новый режим ускорения, который позволяет запускать код с scikit-learn, umap-learn и hdbscan на GPU без изменений. Просто импортируйте cuml.accel, и всё — можно работать с Jupyter, скриптами или Colab.

Это тот же «zero-code-change» подход, что и с cudf.pandas: привычные API, ускорение под капотом.

✔️ Сейчас это бета-версия: основное работает, ускорение впечатляющее, мелкие шероховатости — в процессе доработки.

✔️ Как это работает:
— Совместимые модели подменяются на GPU-эквиваленты автоматически
— Если что-то не поддерживается — плавный откат на CPU
— Включён CUDA Unified Memory: можно не думать о размере данных (если не очень большие)

Пример:

# train_rfc.py
#%load_ext cuml.accel # Uncomment this if you're running in a Jupyter notebook
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

# Generate a large dataset
X, y = make_classification(n_samples=500000, n_features=100, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

# Set n_jobs=-1 to take full advantage of CPU parallelism in native scikit-learn.
# This parameter is ignored when running with cuml.accel since the code already
# runs in parallel on the GPU!
rf = RandomForestClassifier(n_estimators=100, random_state=0, n_jobs=-1)
rf.fit(X_train, y_train)


Запуск:
📍 python train.py — на CPU
📍 python -m cuml.accel train.py — на GPU
📍 В Jupyter: %load_ext cuml.accel

Пример ускорения:
📍 Random Forest — ×25
📍 Linear Regression — ×52
📍 t-SNE — ×50
📍 UMAP — ×60
📍 HDBSCAN — ×175

✔️ Чем больше датасет — тем выше ускорение. Но не забывайте: при нехватке GPU-памяти может быть замедление из-за подкачки.

🔗 Документация: https://clc.to/4VVaKg

Библиотека дата-сайентиста #свежак

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6378

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

To pay the bills, Mr. Durov is issuing investors $1 billion to $1.5 billion of company debt, with the promise of discounted equity if the company eventually goes public, the people briefed on the plans said. He has also announced plans to start selling ads in public Telegram channels as soon as later this year, as well as offering other premium services for businesses and users.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from vn


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA